Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1
نویسندگان
چکیده
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.
منابع مشابه
Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5.
The NIMA-family kinases Nek9/Nercc1, Nek6 and Nek7 form a signalling module required for mitotic spindle assembly. Nek9, the upstream kinase, is activated during prophase at centrosomes although the details of this have remained elusive. We now identify Plk1 as Nek9 direct activator and propose a two-step activation mechanism that involves Nek9 sequential phosphorylation by CDK1 and Plk1. Furth...
متن کاملCdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation
Centrosome separation is critical for bipolar spindle formation and the accurate segregation of chromosomes during mammalian cell mitosis. Kinesin-5 (Eg5) is a microtubule motor essential for centrosome separation, and Tiam1 and its substrate Rac antagonize Eg5-dependent centrosome separation in early mitosis promoting efficient chromosome congression. Here we identify S1466 of Tiam1 as a novel...
متن کاملPlk1 Controls the Nek2A-PP1γ Antagonism in Centrosome Disjunction
In human cells, separation of the centrosomes and formation of a bipolar spindle are essential for correct chromosome segregation [1]. During interphase, centrosomes are joined together by the linker proteins C-Nap1 and rootletin [2-4]. At the onset of mitosis, these linker proteins are phosphorylated and displaced from centrosomes by the Nek2A kinase, which is regulated by two Hippo pathway co...
متن کاملNuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation.
The microtubule motor protein kinesin-5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti-cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the abilit...
متن کاملSequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome.
Nedd1 is a new member of the gamma-tubulin ring complex (gammaTuRC) and targets the gammaTuRC to the centrosomes for microtubule nucleation and spindle assembly in mitosis. Although its role is known, its functional regulation mechanism remains unclear. Here we report that the function of Nedd1 is regulated by Cdk1 and Plk1. During mitosis, Nedd1 is firstly phosphorylated at T550 by Cdk1, which...
متن کامل